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1. Introduction 

HVDC transmission projects may be designed with earth return - either 
as a permanent mode of operation, or an emergency provision. Operation 
with earth return requires a set of ground electrodes which may have to 
carry heavyDC currents. If one or both of the HVDC terminals are located 
near the sea, electrode arrangements may be exposed directly to sea water. 
In this case no electrode temperature problem really exists. On the other 
hand, a so-called land electrode which should be capable of carrying a 
high current to ground over an extended period of time, must be designed 
so that its temperature rise does not reach a dangerous level. 

Temperature rise near an electrode embedded in soil will affect tke 
physical parameters of the soil. Of particular importance in this connection 
is soil moisture movement caused by the electric and the thermal fields. 
One may assume, however, that unless the soil dries out, no radical 
change will occur in the soil parameters as a result of temperature rise. 
Should excessive heating take place somewhere in the system, the result 
would be an increase in soil resistivity. This situation is potentially dan- 
gerous. The maximum temperature in the electrode system should there- 
fore not exceed a certain limit, below 100~ 

In the steady state the temperature field is governed by Laplace's Equa- 
tion just as the electric potential field. Since similar boundary conditions 
may be assumed for the two fields, it is possible to express the temperature 
rise (steady state) of the electrode in terms of its electric potential, and 
electrical and thermal parameters of the surrounding medium.l. 2 The 
relationship so expressed is valid for any electrode configuration. 

The question naturally arises as to how long it takes the electrode, or 
a point outside of it, to reach final temperature, and what sort of function 
governs the temperature rise. This paper will attempt to present an an- 
swer, qualified by the assumptions described below. 

In literature on this subject Thermal Time Constant for the electrode 
is sometimes used as a practical parameter to describe its thermal be- 
haviourEi,3,4,5] . It should perhaps be pointed out that the meaning of time 
constant is not unique except for first order systems. Thermal Time Con- 
stant may be defined as final temperature rise divided by initial rate of 
temperature rise. It may also be defined as the time required to reach 
(I - e "l) times final temperatfire rise. These two definitions become i- 
dentical when the temperature-time function is purely exponential. In the 
case of ground electrodes, the temperature-time dependence follows a dif- 
ferent pattern and the two definitions of Time Constant therefore yield 
different values. 
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It seems that if one were to use a characteristic parameter of this kind, 
the second definition would be more meaningful. It has been adopted in this 
paper, and the corresponding parameter is called Apparent Time Constant, 
T A �9 

2. Assumptions 

The investigation of the thermal behaviour of the electrodes has been 
based on several simplifying assumptions. First of all, an electrode ar- 
rangement which allows radial symmetry is assumed. Two general cases 
involving spherical electrodes will be discussed in this paper: I) concentric 
spheres, and 2) a sphere in an infinite medium. It is recognized that these 
arrangements only vaguely resemble real ground electrodes. On the other 
hand, the results obtained for them will indicate certain features that are 
to be expected for other arrangements as well. 

In the case of concentric spheres, the boundary conditions have been 
assumed as follows: 

i. A step rise in electric potential from zero to U o occurs at the inner 
sphere or shell at time t = 0. 

2. The outer sphere is held at reference or zero potential all the time. 
3. The inner sphere has negligible heat capacity compared to the near 

environmen% hence there is no heat flow across the surface of the 
inner sphere. 

4. The temperature of the outer sphere remains constant, independent 
of time 

5. Initially, the medium is at uniform temperature equal to ambient. 
It is further assumed that the medium between the two spheres is homo- 

geneous and isotropic, and that its electrical and thermal properties are 
temperature independent. Soil does not fully satisfy these conditions. Sig- 
nificant deviation from them must be taken into account when evaluating the 
results of the analysis. 

Boundary Condition #I is equivalent to specifying constant electrode cur- 
rent (for a given electrode) provided the electrical resistivity of the soil 
does not change with temperature. 

The single sphere problem results by letting the radius of the outer 
sphere become infinitely large. Subject to this modification, boundary con- 
ditions remain the same in both cases. 

3. Analysis 

A. Concentric Spheres 

Consider the arrangement of concentric spheres as illustrated in Fig. i. 
The potential at radius b remains zero while that of the inner sphere at 
radius a rises from zero to U o at time t = 0. 

The potential distributionbetweenthe spheres satisfies Laplace's Equation. 
Taking into account the boundary and symmetry conditions, the potential 
at radius r becomes 

Er U(r )  = U o -~  r b - a  (1) 

P o w e r  l o s s  due  to c u r r e n t  f low t h r o u g h  the  m e d i u m  r e s u l t s  i n  h e a t  g e n -  
e r a t i o n .  T h e  D i f f u s i o n  E q u a t i o n  w h i c h  g o v e r n s  h e a t  t r a n s f e r  a n d  d e s c r i b e s  
the  t h e r m a l  f i e l d  m u s t  t h e r e f o r e  i n c l u d e  a h e a t  g e n e r a t i o n  t e r m .  I t  c a n  be  
s h o w n  t h a t  the  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n  f o r  the  t h e r m a l  f i e l d  i s  

_ I OT 
VST + Pt (E.i) k 8t (2) 
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Fig. I .  Concentric spheres. 

w h e r e  T = T ( r , t ) ,  t e m p e r a t u r e ,  Pt = t h e r m a l  r e s i s t i v i t y ,  E and i e l e c t r i c  
f ie ld  i n t e n s i t y  and c u r r e n t  d e n s i t y  v e c t o r s  r e s p e c t i v e l y .  Since 

ab r 
E = - V U  = U o b - a  2 

r 

1 E,  Pe = electric resistivity, it follows that the generation term and i = Pe 

m a y  be e x p r e s s e d  as  

Pt , _ , 2  Pt / U o a b ~  ~ 1 
Pt (W~. t) (3) 

For convenience, a parameter G 
s 

% - L-ff: - j P,/Pe 

has been defined as 

and the heat generation term in the problem involving spheres is given 
in terms of G and r, i.e. 

Pt(E.i) = G s / r  4 

Under conditions of radial symmetry, the partial differential equation 
for T may therefore be written 

i a ( ST) Gs 
2 ar r2 _ I aT + 4 k a t  (4) 

r r 

Solution of equation (4) is obtained using a method which involves separation 
of variables and functions. One can assume the following form of the so- 
lution: 

T( r ,  t) = R(r)  S(t) + f(r) (5) 

where R(r) and f(r) are radius dependent and S(t) time dependent only. The 
time dependent part of the solution must vanish as t approaches infinity. 
f(r) therefore represents the steady-state temperature distribution. 
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Combining equations (4) and (5) yields 

S 8 ( 8rjr~O ) 1 8 (r2 a t )  Gs R 8S 
r2 8r r2 + -- + + -- r2 ~r -at r4 k 8t 

(6) 

The general requirements are satisfied if in equation (6) the sum of the 
f- and G s-terms is set to zero, i.e. 

1 8 ~2 8r> Gs 
2 8r + -  = 0 (7) 4 

r r 

and hence 

r 2 8r k 8t 
(8) 

The formal solution of (7) is found as 

Gs G 
f(r) - + C 2 

2r 2 r 
(9) 

Since (9) represents the final or steady-state temperature distribution, it 
is subject to boundary conditions 3 and 4, viz., 

I T r=b = Tam b and - ~  r=a 

Applying these, the constants of integration are found and the result is 

Equation (8) can be re-ar ranged and written 

i 8 ( 8R) 1 8S 
Rr 2 8r r2 ~r = kS 8t (II) 

Both sides of (ii)must equal the same constant, f k 2, k = real. The so- 
lution for the time dependent portion is readily obtained: 

_3_I 8__SS _ + ~2 
kS 8t - 

- k2kt 
S = C 3 e (12) 

The physical nature of the problem requires that the minus sign be chosen 
in the exponent of equation (12). 

Expanding the left-hand side of (11), one obtains the differential equation 
for R = R(r), 

2 8R 82R + r ~- + k2R = 0. (13) 
8r 2 

The solution of (13) has the general form 
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R : .1 (A s in  k r  + B cos  ~r) (14) 
r 

Now, s u b s t i t u t i n g  f o r  R S and f in e q u a t i o n  (5), u s i n g  (10), (12) nnd (14), 
and c o m b i n i n g  the" c o n s t a n t s  of i n t e g r a t i o n ,  the f o r m a l  so lu t i o n  f o r  1he l e m -  
p e r a t u r e  b e c o m e s  

-X2nkt i / i i 
T ( r ,  t) : ~ e 1 n=0 r - ( A n s i n  3nr, + B u c ~  ;~nr) + q'a,Hb + (i ~ 2r "~ 

1 1 \ 
' a~ + ) (15) 

2h 2 / 

As shown  in Append.ix 1 the e i g e n v a l u e s  a r e  def, ined  by the fo l lowing  
equa t ion :  

Xna c o s  kn(b-a)  + s in  An(b-a)  = 0 (i~) 

and the general solution may be expressed as 

-X kt sin ki~(b-r ) 
T ( r , t )  : ~ e n Cn + f(r)  (17) 

l]~;{J r 

where f(r) is given by equation (I0). 
Th6 coefficients ell in equation, (17) are defined by the relation (see Ap- 
pend<x 1 ) 

i i + r ' 
C n : kn sin An(b-r ) 2r - a a--b dr 

b-a sin ~ {b-a) a 2b 

One of the integrals involved in det'ermining C n is transcendental and 
must be evaluated numerically. Also, an iterative me{hod is required to 
determine the eigenvalues from equation (I~). In order to find particular 
values of the function T(r,t) the use-of a digital computer appears neces- 
sary. A program was written and used to obtain the numerical results for 
T(r,t) presented below. 

B. sphere in an Infinite Medium. 

The technique of analysis employed in the study of concentric spheres 
requires a finite outer radius, b. As the ratio b/i increases, numerical 
evalualion of the sohi~ion (equation (17)) bepomes increasingly difficult. 
Although the results indicate that Apparent Time Constant for the inner 
electrode converges to a definite value as b/a increases without limit, this 
(final) value of r, could not be predicted accurately even with maximum 
ratio b/a equal t 0 ~0. The single sphere problem has therefore been studied 
separately. 

With basic assumptions as in the pre~4ous case, and taking b = ~; the 
constant G s becomes 

T Gs = (Uo a)~ Pt/Pe 

The partial differential equation governing the thermal field remains un- 
changed, (equation (4)), with solution of the form given by equation (5). 
The f function which describes the final temperature distribution now be- 
COllies 
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f = Tamb + Gs 2r  

Going back to the bas ic  d i f f e r e n t i a l  equa t ion ,  i t  is  c o n v e n i e n t  to i n t r o d u c e  
the func t ions  V = V(r,  t) and g = g(r) ,  de f ined  as  fo l lows:  

T ( r ,  t) = V(r,  t) + g(r) (19) 
r r 

It will be noted that 

g(r) = r f(r)  

and tha t  V(r,  t) m u s t  s a t i s f y  the Di f fus ion  Equa t ion ,  i . e .  

Dgv 1 DV 
8r 2 k at 

(20) 

(21) 

B o u n d a r y  Condi t ion  #3 appl ied  to V(r ,  t) r e q u i r e s  tha t  

(v)l v I 
a = - +~- : 0  

" ~  r=a a r=a 
(22) 

If a func t ion  S = S(r,  t) is def ined  as  

av ( 2 3 )  S = - V + a a--r- 

then  B o u n d a r y  Condi t ion  #3 i m p l i e s  tha t  S(a, t) = 0, i . e .  a h o m o g e n e o u s  
equa t ion .  The  S - func t ion  a l so  s a t i s f i e s  the Di f fus ion  Equa t ion .  As shown 
in Appendix  2, the so lu t ion  for  S, t ak ing  into a c c o u n t  a p p r o p r i a t e  b o u n d a r y  
cond i t i ons ,  is  

S ( r , t )  = 2 ~v~---t 0 2(xl+a)  

I e  -( r -a -x l) 2 -(r-a+xl)2 1 

t - -  a 4kt 4kt 
2(x 7+a ) -e dx 1 (24) 

7 

The next  s tep  is to f ind V(r, t). A c c o r d i n g  to equa t ion  (23), 

S v + O V  (25) 
a a Or 

The homogeneous solution for V, 
r/a 

V= C e , 

is not applicable since V must remain bounded as r approaches infinity. 
Therefore C = 0. To obtain the particular solution, multiply equation (25) 

by e-r/a to give 

aS e-r/a : - aV e-r/a + e-r/a 8rOV _ 8r0 (Ve-r/a ) (26) 

I n t e g r a t i n g  both s ides  b e t w e e n  a r b i t r a r y  l i m i t s  c and d y i e ld s :  
d d 

[ f i -r/a Ve-r/a = a Se dr  (27) 

c c 
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By choosing the limits of integration in (27), 

C = 

d = r 

it can be shown that the solution obtained satisfies the (remaining) bound- 
ary condition, viz. temperature at infinite radius remains constant and 
equal to ambient - independent of time. The solution for V is thus 

�9 r 

er/a f Se -r/a V = a d r  (28)  

Combining (28)with (19), (20) and (18), the solution for the temperature 
field can be expressed as follows: 

( 1 1 ) e"r/afs(r,t)e'r/a dr 
T(r,t) = Tarnb + G s -~ - 2r 2 - ra 

r 

(29) 

where S(r,t) is given by equation (24) 
The solution obtained involves a double integration. Because of the types 

of functions eneountered, integration must be done numerically. A computer 
program was written and used to obtain the results presented below for 
the case of the single sphere. 

Results  

A. Concentric Spheres 

The general solution given by equation (17) has been evaluated using 
physical parameters typical for soil, and an inner sphere radius a = 0.5 m. 
Various values of the ratio b/a were considered. Physical parameters 
used are: 

Electric Resistivity, Pe = I00 ohm-m 

Thermal ,, , Pt = 1.0 re~ 

Heat Capacity, c = 840 Watt-sec/(kg.~ 

Mass Density .... 7 = 2500 kg/m a 

Henee Thermal Diffusivity k = (PtTe) -I = 0,475 (10) -6 m/see. For the 
purpose of the numerical evaluation, Uo is chosen as 122 volt and Tam b = 
25~ The final temperature of the electrode then becomes 100~ 

If the exponent of the time dependent part of equation (17) is written 

_t 
k 2 n k t -  rn 

1 (n  th t i m e  c o e f f i c i e n t )  i.e. r n kk2n 

i t  a p p e a r s  c o n v e n i e n t  to  n o r m a l i z e  t h e  t i m e  d e p e n d e n c e  b y  c h o o s i n g  r 1 
(fundamental time coefficient) as reference time unit. 

The eigenvalue equation is given as 

X n b c o s  X n ( b - a  ) + s i n  X n ( b - a  ) = 0 
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L e t  
A n ( b - a )  = a~n, ~-n = ~  

w h e r e  cell i s  t h e  n th " d i m e n s i o n l e s s  e l g e n v a l u e  . S u b s t i t u t i n g  f o r  )t n i n  
t h e  e i g e n v a l u e  e q u a t i o n ,  o n e  o b t a i n s  

b b + sin ~ = 0 oq: - 1 c o s  c~ n n 

B y  s i m i l a r  s u b s t i t u t i o n  the  n th t i m e  c o e f f i c i e n t  "r n m a y  b e  e x p r e s s e d  i n  
t e r m s  of  o~ a s  

11 

- - 1 
rn k ~ o 

i1 

Thus it is seen that the dimensionless eigenvalues are functions of the 
ratio b/a only, and that for any given ratio b/a, the time coefficients are 
proportional to the square of the inner radius. 

~ 
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Fig. 2. Temperature distribution between concentric spheres ,,r scaled time as parameter, b/a :: 10. 

Fig. 2 shows the temperature-radius dependence with sealed or relative 
time as parameter and for a ratio b/a = i0. In Fig. 3 the temperature 
at the inner electrode is plotted against relative time for a number of 
ratios of b/a. By determining the fundamental time coefficient, ~'I, the 
Apparent Time Constant may be found using Fig. 3 simply by multiplying 
the sealed time at which the temperature rise has reached i00(i - e "I)% 
of final value by r I . Apparent Time Constant ~-A as obtained in this manner 
is shown in Fig. 4. "r• increases towards a definite value as the ratio 
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Fig. 3. Inner sphere temperature as a function of scaled t i m e  with ratio b /a  as parameter ,  a = 0.5 1i"1. 

TA, DAYS 

28 

24 

20 

16 

12 

8 

4 

b/a 
0 4 8 12 '6 20 24 :)8 

Fig. 4. Apparcn[ Time Constant fpr the inner sphere as a function of b/a. a = 0.5 m. 

b/a becomes very large. It is seen, however, that the limiting value of 
T A as b approaches infinity can not be predicted accurately unless the 
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curve in Fig. 4 is extended to b/a = 40 or 50. Difficulties arise on the 
numerical side before this high ratio is reached. 

B. S i n g l e  S p h e r e  

T h e  g e n e r a l  s o l u t i o n  o b t a i n e d  f o r  the  s i n g l e  s p h e r e  d o e s  no t  y i e l d  the  
s u r f a c e  t e m p e r a t u r e  d i r e c t l y  b e c a u s e  o f  s i n g u l a r i t y  a t  r = a.  N u m e r i c a l  
r e s u l t s  h a v e  b e e n  e v a l u a t e d  a t  p o i n t s  c l o s e  to  the  s u r f a c e ,  and  the  v a l u e s  
f o r  the  s u r f a c e  o b t a i n e d  b y  e x t r a p o l a t i o n .  

~ 

100 -" 

9 0 -  

8 0 -  

70-  

60-  

50-  

40 -  

50-  

TIME-DAYS 

140 ]] 

6 9 . 4  I 

54.711 

17.4 

8 .94  

i ' ; . . . . . .  �9 .4  (! .6 . 1.0 1.2 1.4 1.6 1.8 2 .0  rn 

Fig. 5. Temperature distribution outside a spherical electrode with time as parameter. Electrode radius a = 
O. 5 m. 

With physieal parameter values as in the previous case, the temperature- 
radius relationship for various values of time is shown in Fig. 5. The 
sphere radius is 0.5 m. Fig. 6 illustrates the temperature-time function 
for the same spherical electrode and for a spherical electrode of radius 
I. 0 m. The Apparent Time Constant is approximately 38 days for the first 
electrode, and 155 days for the second. It has increased by a factor of 
about four as a result of doubling the sphere radius. Some indication to 
this effect was found in the solution for concentric spheres. Also it may 
be noted that ~'A = 38 days for the sphere of radius 0.5 m seems to agree 
well with projection based on Fig. 4 (as b/a -~). 

The initial rate of temperature rise is relatively high at the electrode 
surface. If the electrode temperature increased at this rate, final value 
would be reached in a matter of about 3 days in the ease of the smaller 
sphere, and about 12.1 days for the larger. A "Time Constant" based on 
the initial rate of temperature rise therefore tends to be highly pessimestic 
if not misleading, assuming temperature independen t parameters. 
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Fig. 6. Temperature of single sphere electrode as a function of time. 

Conclusions 

The transient thermal behaviour of spherical electrodes carrying direct 
current has been analysed by classical methods. Formal solutions have 
been obtained for two eases; one involving concentric spheres, the other a 
single sphere in an infinite medium. Numerical integration must be em- 
ployed to obtain particular solutions and computer programs were developed 
for this purpose. Numerical results based on average physical conditions 
in moist soil show that the Apparent Time Constant is significantly higher 
than the value obtained using the initial rate of temperature rise. 
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Appendix 1 A p p l i c a t i o n  o f  B o u n d a r y  C o n d i t i o n s  o n  T ( r ,  t) f o r  t he  C o n c e n t r i c  
S p h e r e  A r r a n g e m e n t  

E q u a t i o n  (14) r e p r e s e n t s  t he  s o l u t i o n  of  t h e  s p a t i a l  e q u a t i o n  (13) :  

1 (A s i n  k r  + B c o s  k r )  R ( r )  = F 

The boundary conditions are applied to determine the eigenvalues k n and 
the corresponding ratios An/B n. 

At the inner boundary aT/Or Ir:a = 0 is satisfied if dR/dr r=a : 0, or 
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A ( k a  c o s  ka - s i n  Xa) - B(Xa s i n  ka + c o s  ka) : 0 (~0) 

A t  the  o u t e r  b o u n d a r y  T ( b ,  t) : Tam b i s  s a t i s f i e d  if  R(b) : 0, o r  

A s i n  Xb + B c o s  k b  : 0 (31) 

F r o m  e q u a t i o n s  (30) a n d  (31) ,  one  f i n d s  

A cos Xb 
-B-= sin kb (32)  

a n d  

k a  c o s  X ( b - a )  + s i n  ) t ( b - a )  : 0 (33) 

E q u a t i o n  (33) d e f i n e s  the  e i g e n v a l u e s  An, n : 0, 1 . . . . .  w h e r e  

wr < X n < (n + 1)~r 

The coefficients B n (or An) have yet to be determined. For this purpose 
the initial condition is applied. Combining equations (15) and (32) at t = 0 
yields 

T ( r , O )  = Tarnb = ~ Bn n=0 r s i n  k n b  ( s i n  knb  c o s  Xnr  - c o s  k n b  s i n  k,~r) 

+ Tamb + Gs ab  2 r  2 2b 2 

i.  e .  

w h e r e  

oo sin ) t n ( b - r  ) / 1 1 1 1 \ 
g C - G / + j (34)  
n=0 n r s ar ab 2r 2 2b 2 

C n : B n / s i n  Xnb  

Multiplying equation (34) by r, one obtains 

n=0 n s a a b  2 b  
(35) 

It can be shown that the functions sin ln(b- r) are orthogonal over the 
interval (a,b) and that the norn~alization constant, ~3n, is 

/3 n : l ( b  - a s i n g k n ( b  - a) )  (36)  

The coefficients C n are therefore found, using the orthogonality property, 
as 

b 

Cn = -~n s i n  kn(b - 1 . . . .  2 r  a + . . . .  ab  2b 2 d r  (37) 
a 

b 
sin kn(b - r) 

It will be noted that one of the integrals in (37), viz. 2r dr, 
is transcendental, a 
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Appendix 2 Solu t ion  of  the  F u n c t i o n  S( r ,  t) 

S = S ( r , t )  i s  d e f i n e d  b y  e q u a t i o n  (23) a s  

0V 
S = - V + a-~-~r 

As has been shown above, the third Boundary Condition implies that S(a, t) = 
0. Boundary Condition 5 states that T(r, 0) = Tamh, hence according to 
equation (19) 

r t= 0 t~.O 

U s i n g  e q u a t i o n s  (18) and  (20),  B o u n d a r y  C o n d i t i o n  5 ( i n i t i a l  cond i t i on )  r e -  
q u i r e s  t h a t  

Wi th  r e s p e c t  to S the  i n i t i a l  c o n d i t i o n  i s  thus  o b t a i n e d  on the b a s i s  of  
e q u a t i o n s  (23) and  (39); 

2) 1 a (4o)  
S(r ,  o) = G s 2 r  2 r  

L e t  x = r - a,  o r  r = x + a ; x > 0, 
and ,  f o r  c o n v e n i e n c e ,  de f ine  a f u n c t i o n  Q s o  t ha t  

Q ( x , t )  = S ( x + a , t )  

The initial condition on Q is then 

Q(x,  0) = G s 2(x+a)  2(x+a)  2 
x > 0  

(41) 

T h e  f u n c t i o n  Q(x,  t) s a t i s f i e s  the  D i f f u s i o n  E q u a t i o n  in  x and t and the 
b o u n d a r y  c o n d i t i o n  Q(0,  t) = 0. As  e x p l a i n e d  in r e f .  6, a g e n e r a l  s o l u t i o n  
f o r  Q(x,  t) m a y  be  e x p r e s s e d  a s  

*~ le -(x-xl)2 
Q(x,  t) - 2 x / ~ l  I Q ( x l ,  {3) 4kt 

o 

_ __Gs ~ I1 1 
2 ~Vf$~t 1 2(x1+a) o 

-(x+xl)24kt ] 
-e dx 1 = 

2(x +al  t/_(x_xl)2 e - e 4kt )dx'(42) 

By substituting x for r - a in (42), one obtains the solutions for S(r, t): 

S(r, t) - 2V/~- 

0 

/- I (r-a-x1)2 "(r-a+xl)2 1 
1 G J 4kt 4kt dx I 

2(xl +a ) 2(xl+a) 2 e - e 
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